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S U M M A R Y  
It has previously been shown by one of the authors that the variational principle of minimum entropy production with 
constant fluxes, established by Glansdorff and Prigogine, may be used in presence of convection by defining ap- 
propriately the generalized fluxes and forces. In this paper, this principle is applied to the description of the stationary 
flow of a non-Newtonian viscous incompressible fluid between two parallel plates in relative motion. The fluid is 
characterized by a viscosity decreasing exponentially with the temperature and by a thermal conductivity independent 
of the temperature. 

The stationary temperature and velocity distributions obtained by the Rayleigh-Ritz variational method are com- 
pared with the solutions obtained by direct analytical integration of the conservation equations. Over a large range of 
the parameters characterizing both the flow and the fluid, a close agreement between the two methods of analysis is 
obtained even with the simplest trial functions. 

I. Introduction 

It is well known that for an irreversible process, the entropy production P inside a volume V 
is a bilinear form for the generalized fluxes J~ and forces X, 

= f__ J~X~dV . P ~x ~r 
Jv 

Prigogine [-1] has shown that under some restrictive conditions (linear relations between 
fluxes and forces, constancy of the phenomenological coefficients, validity of Onsager's 
reciprocity relations and time-independent boundary conditions), the entropy production 
corresponding to a purely dissipative process can only decrease with time and reaches its 
minimum at the stationary state 

aP 
- - < 0  
~ t =  , 

the equality sign corresponds to the stationary state; in variational notation, Prigogine's 
principles expresses that 

6P = 0 (stationary state). (1.1) 

When the above restrictions are relaxed, Glansdorff and Prigogine [-2] have shown that the 
principle (1.1) remains valid if the fluxes are kept constant : 

axe f OX~ ~ t -  v J ~ &  -dV<O' 

or in variational notation: 

6xP = f J~6X~dV=O (stationary state). (1.2) 
J v 

The subscript X indicates that only the forces are submitted to variation. 

* Now at Department of Applied Thermodynamics (director : Prof. G. Burnay, Val-Benoit, 4000, Li6ge, Belgium). 
** Summation convention on repeated indices is used throughout this work. 
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2 G. Lebon, Ph. Malhieu 

Recently, Glansdorff and Prigogine [3], [4] formulated a variational principle describing 
phenomena including convective processes as well. Under time-independent boundary condi- 
tions and with constant fluxes, the principle states that there exists a potential 4~, whose time 
derivative is always lesser than zero and equal to zero in the stationary state: 

~x cp_ f J ~ d V < O ,  
& v 

bx �9 = 0 (stationary state). (1.3) 

Contrary to expressions (1.1) and (1.2), J~ and X~ include now reversible convective contribu- 
tions. The above criterion has raised many criticisms ; they are essentially due to the lack of a 
clear physical meaning of the functional q~ and to the fact that the construction of �9 is rather 
artificial and intricate. 

Moreover the criterions (1.2) and (1.3) are represented by non total differentials. However, 
as shown by Glansdorff and Prigogine, these expressions can be linearized in the form of total 
differentials at least in the neighbourhood of the stationary state; this allows for determining the 
properties of the stationary states by the methods of the calculus of variation. Several authors 
(Hays [5], [6], Butler and Rackley [7], Wartique and Nihoul [8])have applied successfully 
Glansdorff-Prigogine's principle (1.3) to Couette and Poiseuille flow in the case of Newtonian 
fluids. 

In Glansdorff-Prigogine's meaning, the second principle (1.2) covers exclusively purely 
dissipative phenomena. However, in absence of chemical reaction and in absence of non- 
conservative forces, it was shown by Nihoul [-9] and Lebon [10], [11] that the criterion (1.2) 
may be extended to the description of flow processes including reversible contributions. This is 
done by defining appropriately the generalized fluxes and forces. Following Lebon [10], [11], 
the fluxes are established from the conservation equations by expressing that their divergence 
is equal to the rate of local variation of state or kinematical quantities, such as density, 
velocity, total energy, etc. The generalized forces are determined in the following way: after 
calculating the expression of the entropy production within a fixed volume containing the 
fluid, it appears that it exhibits a bilinear form in the fluxes, previously determined, and in some 
factors defined as being the generalized forces. 

The aim of the present work is precisely to apply Lebon's formulation to the problem of the 
motion of a non-Newtonian viscous incompressible fluid between two parallel planes (Couette 
flow). The fluid is supposed to be defined by a constitutive power-law, by a constant heat 
conductivity and an exponential temperature dependent viscosity. 

It must be pointed out that our principle is not in contradiction with the results obtained by 
Gage, Schiffer, Kline and Reynolds [13] on the non-existence of a general variational principle. 
Their assertion apply to systems characterized by quasi-linear laws between fluxes and forces 
of the form 

J~ = L~(~ o ... ~.)X~ (1.4) 

where the forces are defined by 

X~ = grad ~ ,  (1.5) 

the ~ being intensive variables such as temperature, pressure, etc. In our formulation, neither 
0.4) nor (1.5) are used: our forces are not assumed to be the gradient of intensive variables and 
there exists no relation between forces and fluxes. Moreover, the results of Gage et al. are 
contradicted by the works of Butler [14] and Keller [15] who were able to formulate variational 
principles for the class of systems obeying the relations (1.4) and (1.5). 

In section 2, Lebon's formulation is briefly recalled and his previous analysis--limited to 
cartesian coordinates--is extended to the most general vectorial description. 

In section 3, it is applied to the Couette flow of a non-Newtonian fluid. After establishing the 
expression of the functional to be varied, Glansdorff-Prigogine's variational self-consistent 
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method is used to determine the best expressions for the temperature and velocity profiles. 
These approximate solutions are finally compared with the exact analytical solutions which 

were obtained by Martin [12] (Section 4). 

2. Expression of Glansdorff-Prigogine's Second Criterion in Presence of Convection 

In absence of chemical reactions, body forces and heat sources, the conservation equations for 
mass, momentum and energy may be expressed as: 

~--P-P = - div (pv) (2.1) & 

(pv) _ div ( p v v -  ~) (2.2) 
~t 

(p V2 =_ V2 
(2.3) 

the quantity p is the volumic mass; u is the specific internal energy; v is the velocity vector; 
q the heat conduction vector and a the stress tensor; the above equations have been written 
in such a form that the local time derivative of a definite quantity be equal to the divergence of 
an other definite quantity. 

Following the definition proposed by Lebon, the generalized fluxes are respectively given by 

Io = v ,  (2.4) 

J1 = p v v - e ,  (2.5) 

J2 = q + P ( ~  + u)v-a'v. (2.6) 

Physically, these fluxes represent respectively the flux of mass, of total momentum and of total 
energy [16]. 

In order to establish the expression of the generalized forces corresponding to the fluxes 
Jo, ,11 and Jz, let us calculate the entropy production within an arbitrary fixed volume V in 
the fluid. The corresponding entropy variation is given by 

ds .f  (pS) dv  
-- _v - V i -  

where s is the entropy per unit of mass. 
Taking into account the Gibbs relation 

T ds = du + pdr , 

where ~ is the specific volume, T the temperature, p the pressure and performing the calculation 
as in Lebon's papers [10], [11], one gets 

dS v 2 
d t =  iv I T - l ( - d i v  J 2 ) - T - 1  ( ~ -  ~ - ) ( - d i v  J 0 ) - T - l v "  ( ' d i v  J1) 1 d V ,  (2.7) 

/~ being the chemical potential. 
According to the well-known relations 

div (m a) = m div a + a. grad m, 
and 

div (A" a) = (div A)- a + A:  grad a ,  

where a double dot : denotes the inner product of two tensors, expression (2.7) can be written 
as follows : 
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4 G. Lebon, Ph. Mathieu 

= )v J2"gradT-i-div(T-1J2)+div -1 Jo 

- Jo 'grad  IT - i  ( # - @ ) ] +  d i v ( T - l v ' J i ) - J 1  :grad(r-l~)}dV. (2.8) 

and by application of Gauss' theorem, 

dSdt iv{ d2" grad T- 1 -  J~ grad IT-1 (# - ~ ) ] - J l "  grad(T-1 v) t dV 

n being the unit normal pointing outwards to the surface X bounding the volume K 
The variation of the total entropy splits into a volume and a surface integral; the latter 

represents the entropy flux through the surface X bounding the volume of the fluid whereas the 
former is the entropy production P within the volume V. It must be pointed out that P takes 
the form of a bilinear expression in the generalized fluxes and in some terms which will precisely 
be defined as the generalized forces; consequently, these are given by 

X o = - g r a d [ T - l ( # - ~ )  1, (2.10) 

X1 = -grad  (T -1 v), (2.11) 

X2 = grad T -1 . (2.12) 

It must be observed that the above generalized fluxes and forces are the same as those 
appearing in the local potential theory of Glansdorff and Prigogine (see [3] and more particu- 
larly [17] p. 46). These generalized forces and fluxes differ from the usually thermodynamic 
forces and fluxes (16) in that there exist no relations between them. 

Furthermore in the case of interest in this work (i.e. a uniform and incompressible fluid) 
one has 

div Jo = 0 (2.13) 
and, following the reasoning leading from (2.7) to (2.9), it is easy to verify that the only forces 
which will occur are (2.11) and (2.12). 

Let us now show that inequality (1.3) is verified. According to (2.9), the time derivative of the 
entropy production is given by, when the fluxes are kept fixed, 

f { ~?grad(T-lv)+J2"~ } ~?xP _ - J ~  "~  ~ grad T -~ dV (2.14) 
~t v 

Integrating by parts and assuming that the boundary conditions are time-independent, one 
gets: 

~xP Iv{ divJt  ~ c~T- ~ ~ ~t - -~-~ (T- '  v)-div ./2 ~ j  dV, (2.15) 

and taking the conservation laws (2.1) to (2.3) into account: 

Dt --~(OV)'N(T-'v)  +-~ p ~ +  p & )dr. (2.16) 

Introducing in (2.16), the state equation 

0u OT (c v>0) 

where Co is the specific heat at constant volume, one obtains after some calculations, 
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& - j(PT-~--c?t "--& + pC~ k~-f/ ) dV<= 0 (2.17) 

from which it is clear that OxP/& can only decrease and is equal to zero at the stationary state. 

3. Variational Formulation of Couette's Flow Problem 

3.1. Non-Newtonian Fluid Model 

The non-Newtonian fluid is supposed to be described by the following constitutive equation 
[123 

agj _a _p6ia+2*-2,C,e-=Cr-r*)(i2)-,d~, i,j = x, y, z .  (3.1) 

This relation is written in Cartesian coordinates and expresses that the stress tensor o-~j, to 
within the isotropic pressure p, is a function of the rate of strain tensor d~j and the temperature 
T. The quantity 6ij is the usual Kronecker symbol, T* is a convenient reference temperature 
while 12 is the second invariant of dis: 

12 = �89 (3.2) 
with 

d,a= ~tOxa + ~ (3.3) 

Finally, C*, s(s < 0, 5) and ~(~ > 0) are constants for any fluid obeying the constitutive equation 
(3.1). The model (3.1)is a special case of the Reiner-Rivlin model in which the coefficient of the 
rate of strain tensor is assumed to be an exponential function of the temperature. When s is 
equal to zero, the constitutive equation (3.1) corresponds to a Newtonian fluid whose viscosity 
t/is assumed to have an exponential temperature dependence 

1/= C* e - ~tr - r*) (3.4) 

where C* is the viscosity measured at the reference temperature T*. It is also assumed that the 
fluid is incompressible, homogeneous and that the thermal conductivity k is independent of the 
temperature. 

The existence of the Reiner-Rivlin model is questionable. Reiner himself [18] is not sure that 
fltfids obeying the Reiner-Rivlin constitutive equation exist. On the other hand, it is admitted 
by several authors [12], [19], [20] that the model is useful in describing the behaviour of 
polymer melts. However, it is not the purpose of this paper to discuss the existence of Reiner- 
Rivlin's fluids but rather to test the validity of the variational principle 6 x P = 0 by comparing 
its results with exact ones for certain particular systems. 

3.2. Expression of  the Generalized Fluxes and Forces 

Let us now consider the fluid in motion between two infinite parallel plates separated by a 
distance 2h, one plate is at rest while the other moves at the velocity U. The cartesian coordinate 
system is located in a plane midway between the plates, the axes oz and oy being respectively 
parallel and perpendicular to the direction of the flow. 

We are in presence of a one-dimensional problem, the temperature and the velocity fields 
being respectively of the form r - -  T(y) and v=(0, 0, vz(y)) whereas the only non-zero stress 
component is : 

C *  e - et(T - T*) {dv=] 1 - 2s oz ,  = - , , =  (3.s)  

Under the above conditions, the expressions of the generalized fluxes and forces are given by: 
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6 G. Lebon, Ph. Mathieu 

and 

P 0 o 

= - - a y ~  , J1 0 p 
0 -cry~ pv~+p 

12 [0. (p 5- + 

(3.6) 

(3.7) 

i 0 O ,  
x,  = - o o (3.8) 

a(r-  vz) 
dy 0 

0 dT-1 ) 
X 2 =  ' dy , 0 ,  

while the entropy production is 

(3.9) 

e = Iv [ y ~ + (qy-v~O'zr)-~-y }dV. (3.10) 

After simplifications, this expression reduces to 

p = f ( a  T -ldv~ dT-l~ ~y ~-yy + qr-~y / dV, (3.11) 

i.e. the well known expressions for a viscous fluid in which heat conduction is present. In (3.11), 
the classical thermodynamic forces T-1 dv~/dy, dT-i/dy and fluxes a~y, qy appear. However 
this latter expression for P is not suitable for our variational criterion which is only valid 
when P is exhibiting a bilinear form in the generalized fluxes and forces previouslY introduced. 

3.3. Variational Formulation 

When the fluxes are kept constant, the first variation of P is equal to zero in the stationary state 
and given by: 

f { T~ -1 ] [ d T - 1 ] }  0, (3.12, (SxP = a~y6 [d( Vz) + (qy-a~yvz)6 [ - ~ y  _j dV= 
v t_ y 

or after some elementary manipulations, 

3xP = qy6 ~ + a~y + . 

The above expression of 6xP is not convenient for practical calculations because the varia- 
tional operator 6 does not stand in front of the volume integral. Our task is now to write 6x P 
in the usual form 6~ and to determine the expression of the functional ~. This will be done by 
following the same procedure as in Glansdorff and Prigogine's local potential theory. 

Call To(y ) and v~ the temperature and velocity distributions corresponding to the 
stationary state* and replace in (3.13) the quantities qy, a~y and o-zy (dr- 1/dy) respectively by 
qO, o-~y~ and a~y~ (dTo i/dy). These latter quantities being not subject to variation, expression 
(3.13) may be written as 

6xP=6 v qO_~y + azo T-l_~y +~-y  v~ dV=O. (3.14) 

* From now on, all the quantities refering to the stationary state will be labeled with the index "0". 
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Plane Couette flow of an incompressible non-Newtonian fluid 7 

This allows us to define a functional ~b, with 3xP=_3@ by 

1} o -1 dV q~ = q~ --~yy - + az, -~y + ~ y  v, , 
v 

depends on both variables in the stationary state and out of the stationary state. 
Substituting in (3.15) Fourier's law 

(3.15) 

q~ r = -- k dT~ 
dy 

and the constitutive equation 

O'z O = C* e - c * ( T ~ 1 7 6  

we obtain 

= - k  + C*e -~(r~ 
-h dy dy ~,dyy / 

Introducing the dimensionless variables 

IT _ dr, d T ~  }dy .  
~-~y + VZ dy 3 

(3.16) 

(3.17) 

(3.18) 

vz Y 0 : ~ T (3.19) W = ~ ,  Y = ~ ,  B-~ 

with 

Br = c~C* uZ-  z'hzS/k (a Brinkman number), 

the variational problem to be solved for the determination of the stationary state properties 
becomes : 

(+ ~ ~ dOo dO -1 e_B,(oo_o,) ( 9 )  ~- 2s 
3 ~ - 3  3 - l [ ~ -  dY 

Fdw 0 a0oq} 
• k d Y 1 + W -d- f - j  d Y = 0 .  (3.20) 

Note that we do not neglect the operator W(d/dY); therefore and contrary to the works of 
Hays [5] and Butler-Rackley [7], our analysis is not restricted to slowly moving fluids. 

According to (3.15), it is clear that the solution of the variational equations (3.20) leads to the 
solution of (3.13) at the condition to replace in this latter expression the factors qy and a~r by 
their values in the stationary state. 

It is easy to verify that with fixed boundary conditions, the Euler-Lagrange equations cor- 
responding to arbitrary variations of 0 - ~ and W yield the conservation equations of energy 
and momentum, i.e. 

( d W ~  2 -  2s 
d E 0 e-/~r(~176 = 0 (3.21) 
d Y  2 + \-dY-J ' 

dY ~ - ]  = 0. (3.22) 

To obtain these equations, it is necessary to assume that 0o and Wo are not submitted to 
variation and that at the end of all the operations, the subsidiary conditions 0= 0o and W =  1410 
are introduced. 
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3.4. The Self Consistent Method 

To solve the variational problem 6~ = 0, the self-consistent method of Glansdorffand Prigogine 
is used. This method consists of choosing for 0o and 0 (respectively for Wo and W), trial functions 
satisfying the boundary conditions and having the same dependence on the space variable Y, 
e.g. 

N N 

00 ~ o , = anY , 0 = .~ a.Y" 
n = 0  n = 0  

and 
M M 

Wo= Z b~ W= Z b,Y". 
n=O n = 0  

o and b ~ appearing in the expressions of 0o and Wo are assumed to be known The coefficients a, 
and fixed but those appearing in 0 and W are treated as unknowns; these are determinated by 
the Ritz technique and are given by 

- - = 0  n = 0 , 1  . . . . .  N ;  - 0  n = 0 , 1  . . . . .  M .  

After performing these derivations, it is necessary to set 
0 a, - a, n = 0 ,  1 . . . . .  N ,  

b~ n = 0 , 1  . . . . .  M ,  

which is equivalent to applying the subsidiary conditions 00 = 0 and W0 = W. We are then led 
to a set of N + M equations for the N + M quantities a, and b,. 

The analysis of Martin's exact solution shows that the temperature and velocity distributions 
for different values of the parameters s and Br are rather similar to the corresponding ones 
observed in the case of a Newtonian fluid. In particular, the temperature distribution 0 is an 
even function of Y while the velocity distribution W is an odd function of Y; further, in the 
midway plane Y= 0, W is equal to �89 and 0 reaches its maximum. Moreover, let us assume the 
following boundary conditions: 

0 = 0 1  for Y = + I  

(the plates are at the same uniform temperature), and 

W = 0  for Y = - I ,  

W = I  for Y = + I .  

(3.23) 

(3.24) 

(3.25) 

Moreover, for convenience, we choose the reference temperature 0* equal to the temperature 
of the plates 01. 

Under these conditions, appropriate forms for 0 and W are 

0 = 01+0 , , (1 -  r2) ,  (3.26) 

Oo = 01 + 0 ~ (1 - y2) (3.26') 
and 

W = �89 + Y)+ bY(1 - y2),  (3.27) 

Wo = �89 + I )+b o Y(1 - y2) .  (3.27') 

The arbitrary parameters are respectively b and 0,,, which represents the maximum of the 
temperature profile. According to the Ritz method, the values of the unknowns b and Or, 
yielding the best approximating functions W and 0 are solutions of the two integral equations" 

+1  dWohl-2  d dW d0o 1 -= e-~r~176 - 1 (3.28) 
~b -1 ~ - }  -~ + dY d-b dY=O 
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Plane Couette flow of an incompressible non-Newtonian fluid 9 

and 
Orb f+l dOo d (dO-t~ 
~0 , .  =- - t  d Y  dO,.  \ - ~ )  dY 

f - -  e BrO ~ e - BrOo -1 \-d-Y/dff-~] dY = O, (3.29) 

Performing the various derivations, making use of the auxiliary conditions 0 ~ = 0" and b ~ = b, 
the above expressions become: 

-1 e-"*~189 b (1-  3Y2)]1-2~ + ( 1 -  y2) 

x - dY = 0, (3.30) {1-3Y2+2Y2(I  Y : ) ~ [ I + ( 1 - Y 2 ) ~ ]  -1} 

+1 

- dY f_14Y20" I1+(1-y2)00~11-2{1-2~(1 Y2) I I + ( 1 - y 2 ) ~ 1 - 1 }  

+ b(1-3 r2)y -2s 1+(1_ r2) 0"] -2 -1 01A dV--O. (3.31) 

These equations are of the form 

F (0,,, b)= 0 
G(O", b)= O. 

They are solved numerically for various values of the parameters s, Br and 01. The quantities 
0" and b are obtained from the Fletcher-Powell minimizing technique. The calculations are 
performed for one value of 01 (01=1), for five values ofBr (Br=10 -3, 10 -2, 10 -1, 1 and 5) 
and lbr five values of s (s = - 0.4, - 0.2, 0, 0.2 and 0.4). The results obtained are presented in 
table 1. The values ofb and 0,, corresponding to Br = 5 and s = 0.4 cannot be calculated because 

TABLE 1 

Values of b and Om for several values of Br and s 

B, s =  - 0 . 4  s =  - 0 . 2  s = 0  s=0 .2  s = 0 . 4  

10+2b Om 10+2b 0 m 10+2b 0,, 10+2b 0,, 10+2b 0 n 

0.001 0.0007 0.071791 0.0011 0.094727 0.0021 0.124991 0.0046 0.164926 0.0181 0.217633 
0.01 0.0066 0.071763 0.0113 0.094680 0.0208 0.124915 0.0458 0.164811 0.1811 0.217593 
0.1 0.0662 0.071488 0.1121 0.094218 0.2067 0.124157 0.4534 0.163675 1.7877 0.217134 
1 0.6355 0.068895 1.0633 0.089911 1.9287 0.117182 4.1295 0.153102 14.7933 0.207063 
5 2.7245 0.059897 4.3720 0.075704 7.4810 0.095166 14.3348 0.119381 - -  - -  

the quantity � 89  2) is then negative. It results that for this set of parameters, the 
trial functions (3.26) and (3.27) have to be replaced by more complicated expressions. 

We have also calculated the quantities 0,, and b for another value of 01 (namely 01 = 10) in 
the case Br = 1. As showed in table 2, the values of 0" and b are practically insensitive to the 
values of 01. 

Substituting the values of 0" and b in the expressions (3.26) and (3.27), we get the "variational" 
temperature and velocity .profiles; the corresponding numerical results are reported in the 
next section together with the exact solutions. 
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TABLE 2 

Comparison 
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between the values of b and Om calculated respectively for 01 = 1 and 0t = 10 (Br= 1) 

s b 0m 

0 j = l  01=10 01=1 01=10 

-0 .4  0.006355 0.006356 0.068895 0.068909 
-0 .2  0.010630 0.010640 0.089911 0.089950 

0 0.019287 0.019317 0.117812 0.117297 
0.2 0.041295 0.041470 0.153102 0.153511 
0.4 0.147393 0.150041 0.207063 0.209609 

4. Comparison between the Variational and the Exact Solutions 

To determine the accuracy of the variational formulation, an exact solution is required. As 
established by Martin [12], when the reference temperature 0* is chosen equal to the plates 
temperature 01, the analytical temperature and velocity distributions satisfying the boundary 
conditions (3.23), (3.24), (3.25) may be written as 

and 

2 
0 = 01 + ~ In [C 2 sech2(D+CA{"BY)], (4.1) 

1 A ~'~- j C 
W = ~ + ~ tanh(D+CA{"BY), (4.2) 

2 -  2s 

1 - 2 s  

where 

n- 

and 

(4.3) 

B = Br ; (4.4) 

A, D and C are constants of integration given by : 

D = 0 ,  (4.5) 

C 2 = cosh 2 (CA{"B), (4.6) 

C 2 = 1 + � 8 8  2 - n  �9 (4.7) 

Since the Brinkman number is always positive, it follows from the very definition of B that n 
must be greater than 1. 

Moreover, it can also be shown that the velocity and the temperature profiles are unique in 
the velocity U of the upper plate, i.e. in the Brinkman number. 

The variational and the closed form solutions for 0 -  0t are shown in figures 1, 2 and 3 for 

i ,00 

o . 0  a . ~  

EXACT 

Figure 1. Temperature distribution: Comparison between the variational and the exact solutions. 
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1.Do 

o.o o.os 

>, ---I .aaa I 
- -  E x a c t  

o.,o D,s  o.~0 e-~ 

Figure 2. Temperature distribution : Comparison between the variational and the exact solutions. 

Y 

~ .25 

0.D 0 .~  

- -  E X A C t  

VAgtI~,TIONAL 

Figure 3. Temperature distribution : Comparison between the variational and the exact solutions. 

o.so ] 

o . 2 s  ~ s ~ 0 4  

oo 

Figure 4. Exact velocity distribution. 

0 

Figure 5. Exact velocity distribution. 

three values of Br and for five values ofs. In all the calculations 01 has been chosen equal to one. 
The velocity profiles corresponding to different values ofs  are very close together; therefore, 

and in order to maintain clarity in the figures, only the exact solutions are plotted in figures 4, 
5 and 6. Comparison between the exact and the variational velocity distributions may be made 
by examining the graphs of the relative error W(exact)- W(variat.)/W(exact) vs. the dimension- 
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Figure 7: Velocity distribution: Relative error between the variational and the exact solutions. 

less coordinate Y presented in figure 7. Although the percent velocity error is not symmetric 
with respect to Y, only the graphs corresponding to 0-< Y<_ 1 are drawn because for negative 
values of Y and in particular near Y = - 1 ,  the velocity becomes so small that the notion of 
relative error is no longer significant. 

It is seen that the effect of the Brinkman number on the temperature distribution is weaker 
than its effect on the velocity distribution. On the contrary, the effect of the parameter s is more 
important in the case of the temperature profile than in the case of the velocity p rone  ; in 
particular, for Br= 10 .3 the velocity distributions corresponding to s varying between -0 .4  
and 0.4 are not discernable. 

It is also apparent from the figures 1, 2, 3 and 7 that the variational solutions agree fairly with 
the exact ones. For small values of Br, both solutions are practically confused over a wide 
range of variation of s ( -0 .4  < s_<0.4). Even for the greatest value of Br and s, the variational 
solutions are always within 10 percent of the exact solution. 

It must also be noted that the above results are obtained by choosing very simple forms of the 
trial functions ; in particular, the assumed functions for 0 and W do not depend explicitely on 
the parameters s and Br, i.e. they are written without explicit reference to the non-Newtonian 
character of the fluid or to the properties of the flow. Therefore, we may conclude that the varia- 
tional formulation used in this paper yields a simple and powerful technique to solve the non- 
linear equations describing the flow of non-Newtonian fluids. 
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